
PLCpot: Application Dialogue Replay based Scalable PLC
Honeypot for Industrial Control Systems

Syed Ali Qasim
qasims@gvsu.edu

Grand Valley State University
Allendale, Michigan, USA

Muhammad Taqi Raza
taqi@umass.edu

University of Massachusetts Amherst
Amherst, Massachusetts, USA

Irfan Ahmed
iahmed3@vcu.edu

Virginia Commonwealth University
Richmond, Virginia, USA

ABSTRACT
Programmable Logic Controllers (PLCs) are essential components
of industrial control systems (ICS), overseeing critical processes
like manufacturing and power generation. As cyberattacks grow
in sophistication, the security community uses PLC honeypots to
gather threat intelligence on attackers’ tools and strategies. Existing
PLC honeypots, whether low or high interaction, often face chal-
lenges in maintaining realism or supporting complex interactions.
This paper presents PLCpot, a protocol-agnostic and scalable PLC
honeypot framework designed to emulate PLC communication by
analyzing and replaying network traffic. By identifying dynamic
fields and function codes within protocols and mapping them to
application-level operations, PLCpot supports features such as con-
trol logic transfer, basic authentication, and operational modes to
enhance attacker engagement.

We demonstrate PLCpot’s emulation capabilities with multiple
PLC types, evaluating its potential to replicate common functional
and operational behaviors. Additionally, a case study involving
a lab-based elevator model showcases PLCpot’s ability to engage
attackers and capture data for analysis. While PLCpot currently
supports basic ICS protocols over the transport layer, this frame-
work advances ICS threat intelligence by providing a versatile and
scalable approach for emulating PLC behavior and collecting attack
data to inform future security measures.

CCS CONCEPTS
• Security and privacy→ Intrusion Detection Systems; •Com-
puter systems organization → Embedded and cyber-physical
systems security.

KEYWORDS
Critical Infrastructure, Industrial Control Systems, Honeypots

ACM Reference Format:
Syed Ali Qasim, Muhammad Taqi Raza, and Irfan Ahmed. 2025. PLCpot: Ap-
plication Dialogue Replay based Scalable PLC Honeypot for Industrial Con-
trol Systems. In ACM/IEEE 16th International Conference on Cyber-Physical
Systems (with CPS-IoTWeek 2025) (ICCPS ’25), May 6–9, 2025, Irvine, CA, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3716550.3722032

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution 4.0 International License.
ICCPS ’25, May 6–9, 2025, Irvine, CA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1498-6/2025/05
https://doi.org/10.1145/3716550.3722032

1 INTRODUCTION
Programmable Logic Controllers (PLCs) are crucial to modern in-
dustrial control systems (ICS), directly monitoring and controlling
various processes such as manufacturing, power generation, and
chemical processing. They execute user-defined control logic based
on sensor input signals and send output to actuators. PLCs also
communicate with other systems like human-machine interfaces
(HMIs) and supervisory control and data acquisition (SCADA) sys-
tems. Due to their critical role, PLCs have become prime targets for
increasingly sophisticated cyberattacks[1, 2, 4, 5, 7, 9, 10, 16, 25, 29],
requiring the security community to develop effective threat intel-
ligence capabilities to stay ahead of attackers.

PLC honeypots are one such solution that can help security
professionals gather valuable threat intelligence by attracting and
monitoring attackers targeting ICS. While physical honeypots offer
effective intelligence gathering, they come with high hardware and
deployment costs[30]. Fortunately, many researchers have focused
on developing virtual honeypots [6, 8, 11, 14, 17, 26–28] that can
simulate the behavior of a real PLC. There are two types of virtual
honeypots: low-interaction and high-interaction. Low-interaction
honeypots simulate only parts of a real system’s functionality, mak-
ing them easy to set up and resource-efficient but limited in func-
tionality and easily detectable by attackers. High-interaction hon-
eypots aim to emulate the entire PLC system, including hardware,
software, and network environments, offering more comprehen-
sive data on attacker behavior but requiring greater resources and
expertise to set up and maintain.

However, existing ICS honeypots have limitations that hinder
effective engagement with attackers and useful threat intelligence
collection. Low-interaction honeypots are unable to engage and
attract sophisticated attackers, while high-interaction ones lack
operational-level functionalities such as control logic transfer, PLC
modes, and support for different PLC functions. Due to the lack
of operational-level support, most high-interaction honeypots can
be easily identified and may not be able to engage the attacker for
longer sessions. To address this, more advanced honeypots with
operational-level capabilities are needed for effective engagement.

In this paper, we present PLCpot, a protocol-agnostic, scalable
PLC honeypot developed based on our ICS insights that commu-
nication between the PLC and any client is deterministic and can
be replayed to mimic a real PLC. To achieve this, PLCpot analyzes
multiple network dumps of a PLC, learning its protocol, the location
of dynamic fields present in the protocol message (which need to
be updated for successful replay), various function codes used by
the PLC, and mapping these function codes with application-level
operations in a template. Using this template, PLCpot can replay
network dumps, acting as a real PLC on the network and providing

https://doi.org/10.1145/3716550.3722032
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3716550.3722032

ICCPS ’25, May 6–9, 2025, Irvine, CA, USA Syed Ali Qasim, Muhammad Taqi Raza, and Irfan Ahmed

various application-level features such as control logic transfer, PLC
authentication, and PLC modes.

Our contributions are threefold:
• We introduce PLCpot, a scalable and protocol-agnostic hon-
eypot framework capable of providing application-level fea-
tures.
• We demonstrate PLCpot’s ability tomimic different PLCs and
provide experimental evidence of its capabilities to replicate
various functional and operational features.
• We present a case study using a lab model of an elevator with
PLCpot, performing various ICS attacks on it, showcasing
its capacity to engage the attacker and store attack data.

2 BACKGROUND AND RELATEDWORK
2.1 Programmable Logic Controllers in ICS
Programmable Logic Controllers (PLCs) are embedded devices that
control and monitor physical processes using input/output modules
connected to sensors and actuators. The control logic, a user-defined
program, manages input processing and output delivery. Users can
configure, program, and maintain PLCs using proprietary engineer-
ing software, allowing them to write and read control logic to and
from PLC memory[3, 18, 20–22],. PLCs also support network com-
munication, enabling interaction with various ICS services such
as engineering software and human-machine interfaces (HMIs), as
shown in figure 1.
PLC Operational and Functional Features Along with transfer-
ring the control logic, the PLC also has several other operational
and functional features:
• Authentication: PLCs offer password protection for login
and state changes.
• Report I/O data: When connected to engineering software
or HMI, PLCs reply to I/O-related requests to show the ICS
state.
• PLC modes: PLCs have modes like “Run” and “Program”.
“Program” mode allows control logic writing, while “Run”
mode executes control logic and blocks write memory oper-
ations.
• Session Establishment: PLCs accept remote connections
and have session establishment protocols in their firmware.
• Session Maintenance: PLCs respond to incoming requests
for operations like read, write memory, authentication, mode
change, and reading I/O data.

2.2 Related Work on ICS Honeypots
Honeypots are decoy systems designed to mimic real systems, at-
tracting and engaging attackers. They can be classified into low-
interaction or high-interaction honeypots based on the functional-
ity and level of engagement they provide. Numerous PLC honeypots
have been developed for ICS[6, 8, 11, 14, 26–28]. Among the existing
honeypots, HoneyPLC[14] and ICSpot[8] are closest to PLCpot in
terms of the functionalities they provide. HoneyPLC supports con-
trol logic upload and download functionality for Siemens PLCs
and can establish and maintain a session with STEP7 engineering
software. ICSpot, based on HoneyPLC, provides all the features
of HoneyPLC and includes dedicated modules for simulating I/O
data from the physical process. Table 1 summarizes our assessment

of various features and capabilities of existing honeypots, such as
protocol coverage (the number of different protocols a honeypot
supports), control logic transfer (whether the honeypot can upload
and download control logic), device discovery (if the honeypot is
identified as a real PLC by engineering software and other network
scanning tools), and the operational and functional features the
honeypot provides (application-level interaction).

2.3 Limitations of State-of-the-art Honeypots
State-of-the-art honeypots have limitations that reduce their ability
to engage attackers and collect valuable threat intelligence data.
Some of these limitations are:
• Limited coverage (L1): Current honeypots, both low and
high interaction, cover a limited number of PLCs. They rely
on libraries and frameworks for specific PLCs, developed
through reverse engineering ICS protocols. For example,
HoneyPLC, CryPLH, and ICSpot use the Snam7[24] frame-
work for S7comm server simulation, while many Modbus-
based honeypots depend on open-source Modbus libraries
such as libmodbus[23]. These dependencies restrict the sup-
ported PLC range.
• PLC Memory Manipulation (L2): Major ICS attacks, like
Stuxnet[13], aim to manipulate PLC memory. Attackers seek
to write malicious control logic or malware to disrupt the
physical process. However, only HoneyPLC and ICSpot offer
control logic download capability. The absence of control
logic capture in most honeypots limits their attack surface
and threat intelligence generation, making them unable to
detect various attack types.
• Lack of Operational and Functional Features (L3): PLCs
offer features like authentication, modes, session establish-
ment, and maintenance, which enhance the attack surface
and enable better attacker engagement. However, inaccurate
emulation of these features may reveal honeypot identities.
ICSpot and HoneyPLC support application-level sessions,
CryPLH and S7CommTrace partially support Siemens PLCs,
but none fully support PLC mode features. Only CryPLH
offers authentication, while ICSpot (S7comm-based) and Ne-
uPot (Modbus-based) provide I/O data exchange.

Given these limitations, there is a pressing need for a dynamic,
scalable honeypot capable of replicating the diverse operational
and functional features of real PLCs to improve engagement with
attackers and threat intelligence collection.

3 PLCPOT: ENABLING APPLICATION-LEVEL
PLC FUNCTIONALITIES AT SCALE

3.1 Challenges in Developing a Scalable
Honeypot

Developing a scalable and dynamic honeypot for different PLC
operational features presents various challenges.

Diverse Application Logic (C1): The heterogeneity in PLC ap-
plication logic complicates honeypot functionality. Differences in
authentication protocols, such as those in Schneider Electric’s Mod-
icon M221 and Allen-Bradley MicroLogix 1400 as shown in figure2,

PLCpot: Application Dialogue Replay based Scalable PLC Honeypot for Industrial Control Systems ICCPS ’25, May 6–9, 2025, Irvine, CA, USA

HMI Engineering
Workstation

HistorianControl
Server

Physical
Process

Control LAN

Control Center Field Site

PLC

I/O

DataControl
Logic

Figure 1: An overview of Industrial Control Systems. The PLC communicates the actual state of the physical process (I/O data)
to the engineering software and HMI. The engineering workstation runs the engineering software to control and configure the
PLC.

Table 1: Summary of existing PLC honeypots in literature and their features = Complete Implementation G#= Partial Imple-
mentation #= No Implementation

Honeypot ICS Protocols
Required

ICS Protocol
Libraries

Standard Operational and Functional Features Device Discovery Additional IT Services

Modbus ENIP S7comm
Control
Logic
Upload

Control
Logic

Download

Authen-
tication

Exchange
I/O Data

PLC
mode

Session
Establisment

Session
Maintaince

Engineering
Software

Network
Scanning HTTP FTP SNMP

Conpot G# G# G# YES # # # # # # # # G# #
HoneyNet G# # # YES # # # # # # # # G#
ICSpot G# # YES # # #
NeuPot G# # # YES # # # # # # # # # # #

HoneyPLC # # YES # # # #
CryPHL # # YES # # G# # # G# G# G# # #

s7CommTrace # # NO # # # # # G# # # #

User PLC
auth_request

Rb1
Rb2, Rb1*Rb2*H(pwd)

auth_response

E(pwd,Rb1)

b) MicroLogix 1400 Authentication Protocola) Modicon M221 Authentication Protocol

auth_response

PLCUser

Rb1

auth_request

Figure 2: Client Authentication Protocol used by different
PLCs

and variations in hashing algorithms [4] present challenges in repli-
cating application logic.

Proprietary PLCProtocols (C2): Proprietary ICS protocols used
by PLCs for network communication pose challenges in replicating
application-level functionalities. For example, M221 uses the UMAS
protocol within Modbus, while MicroLogix 1400 employs the PCCC
protocol encapsulated by the ENIP protocol. Understanding PLC
protocol fields and semantics is a significant research challenge.

Lack of PLC State Machine Knowledge (C3): PLCs have vari-
ous programmingmodes or states, eachwith distinct state-switching
mechanisms. For instance, MicroLogix 1400 directly enters “Run”
mode after control logic download, while Modicon M221 requires a
user command (‘Start’) in an intermediate state to initiate execution.
Accurately implementing PLC state machines is challenging due
to the lack of public documentation, requiring extensive manual
experimentation.

3.2 PLC Communication Insights
We built PLCpot based on observations from real PLC interactions
with engineering software: 1) deterministic communication, and 2)
consistent binary chunk size during uploading and downloading.
Deterministic Behavior: Communication between the PLC and
network entities involves requests and responses. Apart from mes-
sages requesting the current state of the physical process, all other
messages are deterministic if the PLC configuration remains un-
changed. Predictable communication patterns exist during sessions.

Memory Read/Write Operations: The engineering software con-
verts control logic to machine-level binary, divides it into chunks,
and writes these chunks onto PLC memory using "write" requests.
To read control logic, the software sends "read" requests for dif-
ferent memory regions. Our analysis revealed that the software
consistently divides machine-level binary into the same chunks
and uses the same memory locations during upload and download
operations as shown in figure 3. These messages can be exploited
for replay attacks to replicate control logic operations on the PLC.

3.3 PLCpot Framework
To address honeypot limitations and challenges in 2.3 , we devel-
oped PLCpot, a scalable, protocol-agnostic honeypot. It uses packet
replay techniques and network dumps from real PLCs to learn
session-dependent dynamic fields. By abstracting operations and
mapping function codes to functionalities like control logic transfer
and PLC authentication, it creates a PLC template for each PLC.
With this template, PLCpot replays network dumps, mimicking a
real PLC on the network.

ICCPS ’25, May 6–9, 2025, Irvine, CA, USA Syed Ali Qasim, Muhammad Taqi Raza, and Irfan Ahmed

Download Request

Download ResponseUpload Response

Transaction
ID

Length
Session

IDModbus
Function
Code Write

FNC

Length Session
ID

Success
FNC

Transaction
ID

Length
Session

ID

Upload Request

Modbus
Function
Code

Read
FNC

Success
FNC

Address Address Type Byte size

Same
Control
Logic
Chunk

Figure 3: Request-Response message to read and write a control logic on M221 memory

PLCpot

ModifyPLC
Server

Replay
Database

Response
Generator Lookup Req(i)

PLC State

Network
Dump

Req(i)

Req(j), Res(j)

Res(i)

Req(i)

Res(i)

Data
Storage

Req(i),R
es(i)

Client

PLC Template

Figure 4: Overview of PLCpot. The PLCpot requires network
dump and PLC template to communicate with the client

3.3.1 PLC Template Generation. The creation of a generic hon-
eypot with application-level functionalities is challenged by diverse
PLC protocols and manufacturers’ implementations. To address
this, we developed the PLC Template for PLCpot, using benign net-
work dumps from communication between engineering software
and real PLCs to learn dynamic fields, function code locations, and
application-level request-response messages.

I - Uncovering Dynamic Fields in Proprietary ICS Protocols
(C2)

The proprietary nature of ICS protocols poses challenges in design-
ing dynamic honeypots. By replaying old network dumps, we sim-
ulate real PLC communication. Identifying and updating dynamic
fields is crucial for this simulation. We use differential analysis on
analogous messages from different sessions to uncover dynamic
field locations and semantics in PLC protocols, as shown in Figure 5.
The process explained below involves extracting request-response
pairs from network dumps, grouping and comparing them to iden-
tify dynamic fields, and mapping request and response message
values to verify usability.

Message Identification & Pairing: PLCpot collects multiple
network dumps from PLC communication performing the same
operations. It identifies request and response messages using IP

address and port (Modicon M221 PLC uses port 502, with destina-
tion port 502 messages as requests and source port 502 messages as
responses), working on transport layer payloads. For each request-
response pair (Req_i, Res_i) in one dump, it finds a similar pair
(Req_j, Res_j) in another dump, generating tuples (Req_i, Res_i,
Req_j, Res_j) of the same message in different sessions as described
in algorithm 1.

Algorithm 1 Message Identification and Pairing
Require: Req𝑖 , Res𝑖 ∈ Network Dump 𝑖
Require: Req𝑗 , Res𝑗 ∈ Network Dump 𝑗

1: for each Req𝑖 do
2: for each Req𝑗 do
3: if len(Req𝑖) == len(Req𝑗) and sim(Req𝑖 , Req𝑗) is max

then
4: Pair (Req𝑖 , Req𝑗 , Res𝑖 , Res𝑗)
5: end if
6: end for
7: end for

Finding Session Dependant Fields: PLCpot identifies various
session-dependent fields in each tuple. For every tuple T, differential
analysis is conducted between the respective request and response
messages by employing algorithm 2. Figure 6 shows the dynamic
field identified by comparing two Modicon M221 messages from
different sessions.

Dynamic field Mapping: Upon identification of dynamic field
locations in the request and response messages, the next step is
determining their relationship. This is crucial for the PLCpot be-
cause to replay an old network dump, the PLCpot must update the
dynamic fields in accordance with the new session. The process
starts by identifying common dynamic fields in both messages and
comparing their values. If they share the same values, PLCpotmaps
the dynamic fields in the response with the indices in the request
message, enabling it to use the bytes present at the dynamic field

PLCpot: Application Dialogue Replay based Scalable PLC Honeypot for Industrial Control Systems ICCPS ’25, May 6–9, 2025, Irvine, CA, USA

Network
Dumps

(Same PLC
Operation)

Dynamic Field
Mapping

Identification
and Pairing

Grouping And
Differential

 Analysis

Uncovering Dynamic Fields in Proprietary ICS Protocols

msg
[Req(i1),Req(i2),
Res(i1), Res(i2)]

[Req(i1),Req(i2)]
D_req,D_res

Function Code
Identification

Function Code
Mapping

FC
location

Handling PLC Functionalities

FC(O),
Req(O),Res(O) PLC

Template

Network
Dumps

(Same PLC
Operation)

msg

Network
Dumps

(IDLE PLC State, & PLC operation)

Figure 5: Overview of PLC template generation

Transaction
ID

Transaction
ID

Rest of the message
remains same

Figure 6: Same message in two different sessions of Modicon
M221 PLC

Algorithm 2 Dynamic Fields Detection
1: Initialize 𝐷𝑟𝑒𝑞 ← ∅, 𝐷𝑟𝑒𝑠 ← ∅
2: for 𝑇 = [𝑅𝑒𝑞(𝑖1), 𝑅𝑒𝑞(𝑗1), 𝑅𝑒𝑠 (𝑖1), 𝑅𝑒𝑠 (𝑗1)] do
3: for 𝑎 = 1 to |𝑅𝑒𝑞(𝑖1) | do
4: if 𝑅𝑒𝑞(𝑖1) [𝑎] ≠ 𝑅𝑒𝑞(𝑗1) [𝑎] then
5: 𝐷𝑟𝑒𝑞 ← 𝐷𝑟𝑒𝑞 ∪ {𝑎}
6: end if
7: end for
8: for 𝑏 = 1 to |𝑅𝑒𝑠 (𝑖1) | do
9: if 𝑅𝑒𝑠 (𝑖1) [𝑏] ≠ 𝑅𝑒𝑠 (𝑗1) [𝑏] then
10: 𝐷𝑟𝑒𝑠 ← 𝐷𝑟𝑒𝑠 ∪ {𝑏}
11: end if
12: end for
13: end for

location to update the response message during the replay of any
new request. This mapping, along with the location of dynamic
fields, is stored in the PLC template.

II - Handling PLC Functionalities (C1 & C3)

PLCpot provides an abstraction layer to address heterogeneous ap-
plication logic implementations across PLCs. It delivers appropriate
responses to operational and functional feature requests without
executing corresponding actions, relying on observations to mimic
various features by replaying suitable response messages.

Function Code: Function codes are specialized fields in ICS
protocols for issuing commands, with manufacturers assigning
distinct codes for operations like reading or writing data, starting
or stopping PLCs, and running diagnostics.

Function Code Identification: Function code fields lack fixed
patterns, making identification challenging. We developed heuris-
tics based on ICS domain knowledge to identify function code
locations by examining the limited number of unique function code
values supported by each PLC.

Heuristic: Our heuristic identifies a field in an ICS message
as a function code if it has a limited range of unique values in all
request messages and at most two unique values in all response
messages. We compare messages byte-by-byte within groups, and
an index with variation within a threshold in request messages and
at most two values in response messages indicates the function
code’s location.

Function Code Mapping: After identifying the function code
location, we map function codes to application-level functionalities.
We manually perform operations, capture network communication,
extract function codes, and compare them with benign session
function codes to map the remaining function codes to application-
level functionality.

3.3.2 PLCpot Modules. Figure 4 shows the PLCpot modules and
their functions:

Replay Database: Organizes messages into request-response
pairs for replaying network dumps. It uses fixed ports and a protocol-
agnostic approach to pair messages based on source-destination
port numbers and IP addresses, storing payloads in a hash table.

ICCPS ’25, May 6–9, 2025, Irvine, CA, USA Syed Ali Qasim, Muhammad Taqi Raza, and Irfan Ahmed

PLC State: Stores the initial state of the PLCpot’s, including
PLC mode and password. This module adjusts the state upon client
request, allowing users to modify PLC features remotely to deceive
attackers convincingly.

Data Storage: Preserves all communication between the PLCpot and
clients for threat intelligence generation and forensic analysis.

PLC Server: Facilitates network communication by opening
a TCP/UDP socket on the same port used by actual PLCs. This
module serves as the gateway for client interaction, forwarding
messages to the response generator module and relaying generated
responses to clients.

Response Generator: Processes request messages and searches
for similar requests in the replay database using string similarity
and message length. It identifies two types of request messages:
those that alter PLC memory (e.g., control logic download, PLC
mode change, password updates) and those that do not (e.g., control
logic upload, echo/pingmessages, session establishment/maintenance).
The response generator updates the PLC state for memory change
operations, updates session-dependent dynamic fields in the re-
sponse message, and forwards the response to the communicating
entity.

4 EVALUATION
Existing PLC honeypots lack application-level interaction and op-
erational features of real PLCs, which are crucial for expanding
the honeypot’s attack surface and gathering meaningful informa-
tion. To evaluate PLCpot’s capabilities, we address the following
research questions:

Q1 Can PLCpot be recognized as a real PLC by widely used
engineering software across different PLC vendors?

Q2 Does PLCpot accurately emulate critical operational and
functional features such as connection establishment, control
logic upload/download, authentication, and PLC modes?

4.1 Experimental Setup and Methodology
Our experimental setup included Allen-Bradley Micrologix 1400,
Micrologix 1100, and Schneider Electric Modicon M221 PLCs. We
used SoMachineBasic and RsLogix 500 engineering software, run-
ning on a Windows 10 VM (engineering workstation), to configure
and program the Schneider Electric and Allen-Bradley PLCs. The
PLCpot ran on an Ubuntu 18 VM, and all devices were on the same
network.

To evaluate PLCpot’s various functions, we first executed a tar-
geted function on the real PLC using the engineering software and
captured the network traffic. Then, we provided the network dump
to PLCpot and performed the same function on it. Finally, we as-
sessed if PLCpot could deliver the same features and functionalities
as the real PLC.

4.2 Device Discovery - Q1
To address a limitation of existing PLC honeypots, which often lack
realistic device discovery capabilities, we evaluate PLCpot’s ability
to be detected and identified as a real PLC. Device discovery is
essential for establishing communication, as it allows the honeypot
to be scannable and identifiable on the network, thereby enhanc-
ing its engagement potential. We assessed PLCpot’s discoverability

using widely-used engineering software such as RSLogix 500 and
SoMachineBasic.

Methodology: In this experiment, we first used RSLogix and So-
MachineBasic to discover a real PLC and captured the network
communication between the PLC and the engineering software.
We configured a driver in RSLinx Classic (provided by the PLC
vendor) to connect to the PLC via its IP address. Using this network
dump, we configured PLCpotwith the PLC template and activated
the PLCpotserver. Finally, we used the discovery function in the
engineering software to verify if PLCpotwas identifiable on the
network by its IP address.

Evaluation Criteria: To validate PLCpot’s realism, we set criteria
that it should be identified by RSLogix 500 as a MicroLogix 1400
and 1100 PLC and by SoMachineBasic as a Modicon M221 PLC.

Results:The PLCpotwas identified by RSLogix as a realMicroLogix
1400 and MicroLogix 1100 PLC, whereas SoMachineBasic identified
it as a Modicon M221 PLC, as shown in Figure 7.

4.3 Operational and Functional Features - Q2
1- Session Establishment and Maintenance
PLCs, acting like servers, must establish and maintain communi-
cation sessions. After verifying that PLCpot is a genuine PLC, we
tested its ability to establish and maintain communication sessions.
During a session, the engineering software periodically sends var-
ious ping/ messages to the PLC. If the PLCpot does not respond
correctly to these messages, the engineering software terminates
the connection with an error.

Methodology: We used network dumps captured from a real PLC
to initialize and run PLCpot for each PLC. Then, using engineering
software, we attempted to discover and establish communication
sessions with PLCpot. We ran multiple experiments with varying
session durations, recording request-response messages.

EvaluationCriteria:We set the following criteria: 1) PLCpot should
handle various message types; 2) PLCpot should send appropriate
responses for each request; 3) PLCpot should maintain sessions of
different lengths (5, 15, 30 mins); 4) No timeouts or disconnects
should occur.

Results: PLCpot successfully established and maintained commu-
nication with engineering software in all experiments without any
errors or connection terminations from the engineering software.
As shown in Table 2, PLCpot managed communication sessions for
set durations. For all three PLCs, PLCpot successfully responded to
hundreds of requests in 5, 15, and 30-minute sessions, handling 9
unique function codes for the Modicon M221 and 2 unique func-
tion codes for both the MicroLogix PLCs. The number of unique
function codes remained the same for all sessions because the en-
gineering software sends the same request messages repeatedly
in idle conditions, inquiring about the PLC state and reading IO
values.

PLCpot: Application Dialogue Replay based Scalable PLC Honeypot for Industrial Control Systems ICCPS ’25, May 6–9, 2025, Irvine, CA, USA

Figure 7: PLCpot identified as a real Modicon M221 PLC in SoMachineBasic

Table 2: Summary of messages exchanged between a
plcpot and the engineering software for various sessions.

PLC
Session
Length
(min)

of
req
msg

of
res
msg

of
unique
FC

Session
Timeout/

Disconnects
MicroLogix 5 8153 8153 2 0

1100 15 24460 24460 2 0
30 48926 48926 2 0

MicroLogix 5 10569 10569 2 0
1400 15 31720 31720 2 0

30 63460 63460 2 0
Modicon 5 2678 2678 9 0
M221 15 8098 8098 9 0

30 16126 16126 9 0

2- Authentication
Many PLCs offer an authentication feature, allowing users to set a
password. When establishing a communication session or perform-
ing critical operations, the PLC verifies the password. As shown in
figure 2, authentication typically involves a challenge-based mech-
anism, where the PLC sends a challenge, the user or engineering
software responds with an encrypted password, and the PLC val-
idates the credentials before granting access. However, different
PLCs implement authentication using proprietary algorithms and
mechanisms, making a universal implementation challenging.

To address this complexity, PLCpot provides an authentication
abstraction, allowing administrators to define authentication behav-
ior within the PLC template. Instead of performing real password
verification, PLCpot replays previously captured authentication
exchanges, making it appear as though the system is validating
credentials. The user can configure the PLC template to approve or

deny authentication attempts based on predefined settings, ensur-
ing flexibility while maintaining deception. This approach ensures
that attackers receive responses mimicking real authentication in-
teractions, reducing the likelihood of easy detection.

Methodology: To implement authentication mimicry, we first set
up password authentication on a real Modicon M221 PLC using its
engineering software. We then captured authentication exchanges
for both successful and failed login attempts. By analyzing these
network interactions, we identified authentication-related mes-
sages, including challenge-response messages, function codes, and
response patterns.

Next, we integrated this authentication data into PLCpot’s tem-
plate. Instead of verifying passwords, PLCpot replays captured au-
thentication request-response messages to simulate real authenti-
cation behavior. The user can configure PLCpot to control authen-
tication outcomes (e.g., always approve, always deny, or randomly
allow access), adding further variability to deceive attackers. Finally,
we ran PLCpot and made some authentication attempts.

Evaluation Criteria: For this experiment, we set the criteria that
PLCpot should respond to authentication requests and approve or
disapprove them according to the PLC template.

Results: In our experiments, PLCpot successfully managed authen-
tication requests according to the PLC template. Additionally, it
captured the attacker’s password hash, which can be used for foren-
sic analysis.

3- PLC Modes
PLC mode, an operational feature altered using engineering soft-
ware, can be exploited to disrupt physical processes, as noted by
Syed et al. [19]. It is crucial for PLCpot to replicate PLC modes to
effectively engage attackers. We evaluated this on Micrologix 1400,
1100, and Modicon M221 PLCs.

ICCPS ’25, May 6–9, 2025, Irvine, CA, USA Syed Ali Qasim, Muhammad Taqi Raza, and Irfan Ahmed

Table 3: Summary of control logic download & upload for M221 PLC

File
Size
(KB)

of
Programs

Total
Rungs

Total
Instructions

Download
Operations

Upload
Operations

No. of
Connection
Timeouts

Download Upload Download Upload Total
Req

Write
Req.

Total
Req

Read
Req.

60-80 24 66 66 258 258 9050 1126 5124 1228 0
81-90 5 19 19 51 51 1888 255 917 265 0
91-100 5 45 45 129 129 1996 245 894 249 0
101-120 3 32 32 80 80 1178 151 516 141 0
120+ 3 52 52 233 233 1176 173 509 168 0
Total 40 214 214 751 751 15288 1950 7960 2051 0

Methodology:We established sessions with real PLCs and changed
their modes using the engineering software i.e “Run” to “program”
(for Micrologix 1400 and 1100) or “start” to “stop” and vice versa
for Modicon M221. We captured the network communication, iden-
tified functions and messages for PLC modes, and updated the
PLC template. Finally, we tested mode changes on PLCpot multiple
times.

Evaluation Criteria: 1) PLCpot should respond to mode change
requests and support all modes. 2) PLCpot should update and return
its mode based on user requests.

Result: PLCpot successfully changed its mode in each cycle and
maintained connection without disruption, indicating its ability to
engage attackers targeting PLCmodes. Additionally, PLCpot logged
communication for potential threat intelligence extraction.

4- Control Logic Download
Control logic download is a prime target in PLC cyber attacks,
where attackers aim to disrupt physical processes by injecting ma-
licious control logic. Thus, it is crucial for PLCpot to allow users to
download malicious control logic and store it for threat intelligence
gathering. We tested PLCpot’s capability to handle control logic
downloads.

Methodology:We initiated PLCpot with the Modicon M221 PLC
template and established a communication session using SoMa-
chineBasic software. We then downloaded control logic programs
of varying sizes and complexities onto PLCpot using the engineer-
ing software, capturing the network communication for evaluating
the upload functionality.

Evaluation Criteria: The evaluation criteria required PLCpot to
handle all control logic download messages without timeouts or
session disconnects, ensuring the user receives confirmation of
control logic download from the engineering software.

Results: Our experiments demonstrated that PLCpot successfully
handled all download requests. As seen in Table 3, we downloaded
40 control logic programs to the PLCpot. During these operations,

it received 15,288 request messages, including 1,950 messages to
write control logic on PLC memory. PLCpot effectively responded
to all messages and stored the communication, which can be used
to extract the control logic binary.

5- Control Logic Upload
Control logic upload is an essential feature for PLCpot to support,
as it is often used in cyber attacks [12, 15]. Attackers perform re-
connaissance by uploading or reading control logic from the PLC
memory, gaining insights into the physical process’s inputs, out-
puts, and current state. This allows them to create efficient and
impactful malicious control logic. Additionally, after downloading
malicious control logic to the PLCpot, attackers may perform up-
load operations to verify that the desired malicious control logic is
running on the PLC.

Methodology: To evaluate PLCpot’s control logic upload func-
tionality, we began by running PLCpot with the M221 template and
providing it with network dumps captured during the control logic
download experiments. We then used the engineering software’s
upload functionality to read the control logic that was previously
downloaded to the PLC. Finally, we compared the downloaded and
uploaded control logic to assess the transfer accuracy. For each con-
trol logic, we manually compared individual rungs and instructions.

Evaluation Criteria: The evaluation criteria for this experiment
are: 1)PLCpot must handle all read control logic requests, 2) engi-
neering software must successfully upload the entire control logic
from PLCpot without errors or session disconnects, and 3) the up-
loaded control logic should match the one previously downloaded,
with the same rungs and instructions in order.

Results: As shown in Table 3 , our evaluation demonstrates that
PLCpot successfully uploaded all 40 control logic files using the
network dump. During our experiments, the PLCpot received over
7960 messages, including 2052 control logic read requests. Addi-
tionally, we compared the uploaded control logic program with the
original program, and they had identical rungs and instructions in
the same order, indicating that the PLCpot can effectively replicate
the real PLC.

PLCpot: Application Dialogue Replay based Scalable PLC Honeypot for Industrial Control Systems ICCPS ’25, May 6–9, 2025, Irvine, CA, USA

5 CASE STUDY: PLCPOT FOR ELEVATOR
SYSTEM

To assess PLCpot’s ability to engage with attacks and capture attack
artifacts, we conducted a case study using a lab model elevator
system controlled by aModiconM221 PLC. The goal was to evaluate
how well PLCpotcould mimic a real PLC in an ICS threat scenario.

To achieve this, we first downloaded the elevator control logic
onto a real M221 PLC and captured the resulting network commu-
nication. This network dump, which reflects interactions between
the PLC and the engineering software, was then fed into PLCpot.
By replaying this captured traffic, PLCpotwas able to simulate the
behavior of the core control application.

Next, we generated a PLC template using network dumps from
40 different control logic program downloads on a real M221 PLC,
covering various configurations and sizes. Additionally, we cap-
tured authentication messages by performing both successful and
unsuccessful authentication attempts on the real M221 PLC. These
authentication interactions were also incorporated into the PLC
template. The study setup included a Windows 10 VM for running
the engineering software and two Ubuntu 20 VMs—one for run-
ning PLCpotand another for executing attacks. Multiple ICS attacks
were conducted on the elevator system, and the resulting network
communication was captured and analyzed.

5.1 Adversary Model and Attack Scenario
In our case study, we envision an adversary who has gained net-
work access and can connect to the PLC, sending and receiving
messages. This adversary has a moderate understanding of PLC
operations and control logic but lacks insider knowledge of the
specific physical process or detailed input/output (I/O) data. The
attacker can perform the following actions:
• Upload the control logic from PLCpot to analyze and infer
details about the physical process.
• Write and downloadmalicious control logic to PLCpot’smem-
ory.
• Execute common PLC functions without a deep understand-
ing of the proprietary protocols used by the PLC.

This adversary scenario is realistic for an attacker with network
access but limited proprietary knowledge or advanced tools. As
PLCpot does not provide real-time physical system data, the adver-
sary cannot fully verify I/O consistency. Additionally, PLCpot is
designed for interactions with standard engineering software rather
than sophisticated scanning tools like Shodan, which could expose
its limitations. The adversary’s goal is to gain insights into control
logic and possibly alter PLC operations to disrupt the process.

5.2 Cyber Attacks On PLCpot
We executed multiple ICS attacks on the PLCpot:

Control Logic Injection Attack: The control logic injection at-
tack [29] involves downloading harmful control logic onto a PLC’s
memory, disrupting the physical process. The attacker uses engi-
neering software or custom scripts to send "write" requests with
malicious payloads.

Control Logic Theft Attack (Reconnaissance): This attack [12,
15] involves gathering information about a physical process by
analyzing the control logic on a PLC. The attacker aims to develop
customized attacks targeting the specific process. The reconnais-
sance phase can lead to sophisticated attacks, causing significant
damage.

Control Engine Attack: A Control Engine Attack [19] targets the
control engine executing the control logic on a PLC. The attacker
sends a command to change the state of the PLC, disrupting the
physical process.

Brute Force Authentication: We tested the data collection ca-
pability by performing a brute force authentication attempt using
engineering software or Python scripts. The objective was to evalu-
ate PLCpot’s ability to detect, respond to, and log malicious access
attempts.

5.3 Analysing the Forensic Artifacts
After executing attacks on PLCpot and capturing the communi-
cation, we analyzed the network dumps to identify the attacker’s
footprints. This analysis helped determine the attacker’s methods
and actions during the attack. The information can be used to re-
construct the attack and assess its impact on the system.

Identifying Control Logic Injection and Reconnaissance At-
tacks
We analyzed network dumps from the control logic injection and
reconnaissance attacks using Eupheus, a control logic decompiler
by Sushma et al. [12]. Eupheus converts control logic binaries to
Instruction List format. We identified write request messages with
function code ‘29’ to extract the control logic binary from the net-
work dump. To recognize control logic theft attacks, we looked for
read function code ‘28’ messages. Our analysis found 61 unique read
messages, suggesting the attacker attempted to access the PLC’s
control logic.
Detecting Control Engine Attack: To detect control engine at-
tacks, we developed a Python script that searches the PLCpot net-
work dump for request messages where the attacker attempts to
change the M221 PLC mode from start to stop. In the M221 PLC,
function code ‘40’ is used to start the PLC and ‘41’ to stop the PLC.
The script filters request messages accordingly.

∀𝑟 ∈ 𝑅𝑒𝑞𝑠,


PLC START, if 𝑟 .tcppayload[9] = 40
PLC STOP, if 𝑟 .tcppayload[9] = 41
Continue, otherwise

Detecting Authentication Attempts: We used a custom Python
script to detect and analyze password authentication attempts on
the PLCpot. During the function code extraction phase, we iden-
tified messages for M221 authentication. Authentication in M221
occurs in two steps: requesting a seed (function code ‘03’) and
sending the computed password hash(function code ‘6d’). We pro-
grammed the PLCpot to engage the attacker, responding to the
initial authentication request with an old message and rejecting the
authentication when the attacker sends the password hash(function
code ‘fd’).

ICCPS ’25, May 6–9, 2025, Irvine, CA, USA Syed Ali Qasim, Muhammad Taqi Raza, and Irfan Ahmed

Algorithm 3 Algorithm to detect PLC Authentication Attempt
𝑟 ← 𝑅𝑒𝑞𝑠

if r.tcppayload[9] == "03" then
Authentication Attempt

end if
if r.tcppayload[9] == "6D" then

Password Hash
end if

6 LIMITATION AND FUTUREWORK
Although PLCpot is protocol-agnostic and offers many PLC opera-
tional and functional features, it has some limitations.

First, the diversity of network dumps determines the quality of
dynamic fields identified, as PLCpot performs differential analysis
on messages from various dumps. If a dynamic field’s value doesn’t
change between two different dumps, it won’t be labeled as dynamic.
Therefore, to identify complete dynamic fields, diverse training data
is essential.

Another limitation relates to the network dump used for re-
play. During template generation, PLCpot identifies function codes,
their purposes, and associated request and response messages, stor-
ing this information in the PLC template. PLCpot can only send a
successful response if the required information is present in the
template and network dump being replayed. Thus, it is crucial to
populate the template with as many function codes as possible and
ensure the replayed network dump contains all required response
messages.

Furthermore, while PLCpot employs several heuristics to ensure
replies are as accurate as possible, there remains a possibility for so-
phisticated attackers to detect the honeypot. An adversary familiar
with PLCpot’s operation and communication protocol could craft
specific requests designed to reveal discrepancies. For instance, an
attacker might introduce a persistent change expecting it to man-
ifest in the subsequent reply. While PLCpot covers control logic
upload/download, authentication, and several PLC modes, an at-
tacker could still attempt to detect the honeypot by making subtle
changes that should appear in the next response. If PLCpot fails to
accurately reflect these changes, it could expose its presence as a
honeypot. However, if we capture these crafted messages and their
responses from a real PLC, PLCpot can incorporate those messages
into its database, preventing detection in future interactions.

Lastly, since PLCpot is not connected to a real physical system,
it lacks continuous data from sensors or actuators like a real PLC. A
highly knowledgeable attacker with an in-depth understanding of
both the PLC protocol and the physical process—including the type
of process, normal sensor data, actuator (I/O) data, etc might be able
to detect PLCpot. This detection could occur because PLCpot only
replies from its database of already captured messages, which may
not fully mimic the real-time operational dynamics of an actual
PLC system. To address this, PLCpot could be enhanced with an
additional module that generates I/O data similar to a real physical
process, which we plan to explore in future work.

7 CONCLUSION
As attacks on ICS systems continue to grow in both frequency and
sophistication, it is imperative for the security community to under-
stand attacker behavior and capabilities. In this paper, we introduce
PLCpot, a scalable, protocol-agnostic honeypot. Our experimental
results show that PLCpot outperforms existing state-of-the-art hon-
eypots by providing application-level functionalities. Additionally,
the PLC template generation feature of PLCpot underscores its scal-
ability, allowing the security community to configure it to operate
as various (out-of-the-box) PLCs. To illustrate PLCpot’s effective
engagement with attackers, we conducted a case study using a
lab model of an elevator. Throughout this case study, we launched
several attacks on the PLC, demonstrating that PLCpot engages
effectively with attackers and collects data that can support forensic
analysis and enhance threat insights.

ACKNOWLEDGMENT
This work is partially supported by the National Science Foundation
under Grant Award Numbers 2345563 and 2212424.

REFERENCES
[1] Adeen Ayub. 2024. Stealthy Control Logic Attacks and Defense in Industrial

Control Systems. VCU Scholars Compass (Aug 2024). https://scholarscompass.
vcu.edu/etd/7817/

[2] Adeen Ayub, Wooyeon Jo, and Irfan Ahmed. 2024. Charlie, Charlie, Charlie on
Industrial Control Systems: PLC Control Logic Attacks by Design, Not by Chance.
In 2024 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST). 182–193. https://doi.org/10.1109/HOST55342.2024.10545392

[3] Adeen Ayub, Wooyeon Jo, Syed Ali Qasim, and Irfan Ahmed. 2023. How Are
Industrial Control Systems Insecure by Design? A Deeper Insight Into Real-
World Programmable Logic Controllers. IEEE Security Privacy 21, 4 (2023), 10–19.
https://doi.org/10.1109/MSEC.2023.3271273

[4] Adeen Ayub, Hyunguk Yoo, and Irfan Ahmed. 2021. Empirical Study of PLC
Authentication Protocols in Industrial Control Systems. In 2021 IEEE Security and
PrivacyWorkshops (SPW). 383–397. https://doi.org/10.1109/SPW53761.2021.00058

[5] Adeen Ayub, Nauman Zubair, Hyunguk Yoo, Wooyeon Jo, and Irfan Ahmed. 2023.
Gadgets of Gadgets in Industrial Control Systems: Return Oriented Programming
Attacks on PLCs. In 2023 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). 215–226. https://doi.org/10.1109/HOST55118.2023.
10132957

[6] Daniela Buza, Ferenc Juhász, György Miru, Márk Félegyházi, and Tamás Holczer.
2014. CryPLH: Protecting Smart Energy Systems from Targeted Attacks with a
PLC Honeypot. In International Workshop on Smart Grid Security.

[7] T. M. Chen and S. Abu-Nimeh. 2011. Lessons from Stuxnet. Computer 44, 4 (2011),
91–93.

[8] Mauro Conti, Francesco Trolese, and Federico Turrin. 2022. ICSpot: A High-
Interaction Honeypot for Industrial Control Systems. In 2022 International Sym-
posium on Networks, Computers and Communications (ISNCC). 1–4. https:
//doi.org/10.1109/ISNCC55209.2022.9851732

[9] Dragos andDragos. 2022. CRASHOVERRIDE: Analyzing themalware that attacks
power grids. https://www.dragos.com/resource/crashoverride-analyzing-the-
malware-that-attacks-power-grids/

[10] Kevin E. Hemsley and Dr. Ronald E. Fisher. 2018. History of industrial control
system cyber incidents. https://www.osti.gov/servlets/purl/1505628

[11] Arthur Jicha, Mark Patton, and Hsinchun Chen. 2016. SCADA honeypots: An
in-depth analysis of Conpot. In 2016 IEEE Conference on Intelligence and Security
Informatics (ISI). 196–198. https://doi.org/10.1109/ISI.2016.7745468

[12] Sushma Kalle, Nehal Ameen, Hyunguk Yoo, and Irfan Ahmed. 2019. CLIK on
PLCs! Attacking Control Logic with Decompilation and Virtual PLC. https:
//doi.org/10.14722/bar.2019.23074

[13] Ralph Langner. 2011. Stuxnet: Dissecting a Cyberwarfare Weapon. IEEE Security
Privacy 9, 3 (2011), 49–51. https://doi.org/10.1109/MSP.2011.67

[14] Efrén López-Morales, Carlos Rubio-Medrano, Adam Doupé, Yan Shoshitaishvili,
Ruoyu Wang, Tiffany Bao, and Gail-Joon Ahn. 2020. HoneyPLC: A Next-
Generation Honeypot for Industrial Control Systems. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security (Virtual
Event, USA) (CCS ’20). Association for Computing Machinery, New York, NY,
USA, 279–291. https://doi.org/10.1145/3372297.3423356

https://scholarscompass.vcu.edu/etd/7817/
https://scholarscompass.vcu.edu/etd/7817/
https://doi.org/10.1109/HOST55342.2024.10545392
https://doi.org/10.1109/MSEC.2023.3271273
https://doi.org/10.1109/SPW53761.2021.00058
https://doi.org/10.1109/HOST55118.2023.10132957
https://doi.org/10.1109/HOST55118.2023.10132957
https://doi.org/10.1109/ISNCC55209.2022.9851732
https://doi.org/10.1109/ISNCC55209.2022.9851732
https://www.dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids/
https://www.dragos.com/resource/crashoverride-analyzing-the-malware-that-attacks-power-grids/
https://www.osti.gov/servlets/purl/1505628
https://doi.org/10.1109/ISI.2016.7745468
https://doi.org/10.14722/bar.2019.23074
https://doi.org/10.14722/bar.2019.23074
https://doi.org/10.1109/MSP.2011.67
https://doi.org/10.1145/3372297.3423356

PLCpot: Application Dialogue Replay based Scalable PLC Honeypot for Industrial Control Systems ICCPS ’25, May 6–9, 2025, Irvine, CA, USA

[15] Stephen McLaughlin and Patrick McDaniel. 2012. SABOT: Specification-Based
Payload Generation for Programmable Logic Controllers (CCS ’12). Association
for Computing Machinery, New York, NY, USA, 439–449. https://doi.org/10.
1145/2382196.2382244

[16] Yassine Mekdad, Giuseppe Bernieri, Mauro Conti, and Abdeslam El Fergougui.
2021. A Threat Model Method for ICS Malware: The TRISIS Case. In Proceed-
ings of the 18th ACM International Conference on Computing Frontiers (Virtual
Event, Italy) (CF ’21). Association for Computing Machinery, New York, NY, USA,
221–228. https://doi.org/10.1145/3457388.3458868

[17] Syed Qasim, Muhammad Taqi Raza, and Irfan Ahmed. 2023. vPLC: A scalable
PLC testbed for IIoT security research. https://www.acsac.org/2023/workshops/
icss/syed-ali-qasim-paper.pdf

[18] Syed Ali Qasim. 2023. VIRTUAL PLC PLATFORM FOR SECURITY AND FOREN-
SICS OF INDUSTRIAL CONTROL SYSTEMS. VCU Scholars Compass (2023).
https://doi.org/10.25772/HWDW-CV61

[19] Syed Ali Qasim, Adeen Ayub, Jordan Johnson, and Irfan Ahmed. 2022. Attack-
ing the IEC 61131 Logic Engine in Programmable Logic Controllers. In Critical
Infrastructure Protection XV, Jason Staggs and Sujeet Shenoi (Eds.). Springer
International Publishing, Cham, 73–95.

[20] Syed Ali Qasim, Wooyeon Jo, and Irfan Ahmed. 2023. PREE: Heuristic builder for
reverse engineering of network protocols in industrial control systems. Forensic
Science International: Digital Investigation 45 (2023), 301565. https://doi.org/10.
1016/j.fsidi.2023.301565

[21] Syed Ali Qasim, Juan Lopez, and Irfan Ahmed. 2019. Automated Reconstruction
of Control Logic for Programmable Logic Controller Forensics. In Information
Security, Zhiqiang Lin, Charalampos Papamanthou, and Michalis Polychronakis
(Eds.). Springer International Publishing, Cham, 402–422.

[22] Syed Ali Qasim, Jared M. Smith, and Irfan Ahmed. 2020. Control Logic Forensics
Framework using Built-in Decompiler of Engineering Software in Industrial

Control Systems. Forensic Science International: Digital Investigation 33 (2020),
301013. https://doi.org/10.1016/j.fsidi.2020.301013

[23] Stéphane Raimbault. [n. d.]. Libmodbus. https://libmodbus.org/
[24] Stéphane Raimbault. [n. d.]. Step7 Open Source Ethernet Communication Suite.

https://snap7.sourceforge.net/
[25] Saranyan Senthivel, Shrey Dhungana, Hyunguk Yoo, Irfan Ahmed, and Vassil

Roussev. 2018. Denial of Engineering Operations Attacks in Industrial Control
Systems (CODASPY ’18). Association for Computing Machinery, New York, NY,
USA, 319–329. https://doi.org/10.1145/3176258.3176319

[26] Yao Shan, Yu Yao, Tong Zhao, and Wei Yang. 2023. NeuPot: A Neural Network-
Based Honeypot for Detecting Cyber Threats in Industrial Control Systems. IEEE
Transactions on Industrial Informatics (2023), 1–10. https://doi.org/10.1109/TII.
2023.3240739

[27] Susan Wade. 2011. SCADA Honeynets: The attractiveness of honeypots as critical
infrastructure security tools for the detection and analysis of advanced threats. Ph. D.
Dissertation.

[28] Feng Xiao, Enhong Chen, and Qiang Xu. 2017. S7commTrace: A High Interactive
Honeypot for Industrial Control System Based on S7 Protocol. In International
Conference on Information, Communications and Signal Processing.

[29] Hyunguk Yoo and Irfan Ahmed. 2019. Control Logic Injection Attacks on Indus-
trial Control Systems. In ICT Systems Security and Privacy Protection, Gurpreet
Dhillon, Fredrik Karlsson, Karin Hedström, and André Zúquete (Eds.). Springer
International Publishing, Cham, 33–48.

[30] Jianzhou You, Shichao Lv, Yue Sun, Hui Wen, and Limin Sun. 2021. HoneyVP:
A Cost-Effective Hybrid Honeypot Architecture for Industrial Control Systems.
In ICC 2021 - IEEE International Conference on Communications. 1–6. https:
//doi.org/10.1109/ICC42927.2021.9500567

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

https://doi.org/10.1145/2382196.2382244
https://doi.org/10.1145/2382196.2382244
https://doi.org/10.1145/3457388.3458868
https://www.acsac.org/2023/workshops/icss/syed-ali-qasim-paper.pdf
https://www.acsac.org/2023/workshops/icss/syed-ali-qasim-paper.pdf
https://doi.org/10.25772/HWDW-CV61
https://doi.org/10.1016/j.fsidi.2023.301565
https://doi.org/10.1016/j.fsidi.2023.301565
https://doi.org/10.1016/j.fsidi.2020.301013
https://libmodbus.org/
https://snap7.sourceforge.net/
https://doi.org/10.1145/3176258.3176319
https://doi.org/10.1109/TII.2023.3240739
https://doi.org/10.1109/TII.2023.3240739
https://doi.org/10.1109/ICC42927.2021.9500567
https://doi.org/10.1109/ICC42927.2021.9500567

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Programmable Logic Controllers in ICS
	2.2 Related Work on ICS Honeypots
	2.3 Limitations of State-of-the-art Honeypots

	3 PLCpot: Enabling Application-level PLC Functionalities at Scale
	3.1 Challenges in Developing a Scalable Honeypot
	3.2 PLC Communication Insights
	3.3 PLCpot Framework

	4 Evaluation
	4.1 Experimental Setup and Methodology
	4.2 Device Discovery - Q1
	4.3 Operational and Functional Features - Q2

	5 Case Study: PLCpot for Elevator System
	5.1 Adversary Model and Attack Scenario
	5.2 Cyber Attacks On PLCpot
	5.3 Analysing the Forensic Artifacts

	6 Limitation And Future Work
	7 Conclusion
	References

