

In Wallet We Trust: Bypassing the Digital Wallets Payment Security for Free Shopping

Raja Hasnain Anwar*, Syed Rafiul Hussain[‡], and Muhammad Taqi Raza^{*} ^{*}University of Massachusetts Amherst, [‡]The Pennsylvania State University

August 14, 2024

Physical credit cards are prone to **theft** and **skimming**.

Our view of the digital payments security

/////

Physical credit cards are prone to **theft** and **skimming**.

Digital wallets are a **secure** alternative to physical cards.

Our view of the digital payments security

/////

3

Digital wallets are a **secure** alternative to physical cards.

Why?

Our view of the digital payments security

/////

4

Because of the FaceID, Fingerprint, and on-device encryption mechanism...

Digital wallets are a **secure** alternative to physical cards. Our view of the digital payments security

/////

_

What if I told you...

An attack can add your **stolen card** to their wallet

What if I told you...

An attack can add your **stolen card** to their wallet

& use it even *after* you **lock** or **replace** it.

What if I told you...

Digital Payments – Classical Way

Digital Payments – Classical Way

Digital Payments – Classical Way

NFC-enabled Payment Card

- Securely store the card number
- Virtual number (token) for payments
- Multiple devices
 - Multiple users

Critical Procedures

How does the cardholder's identity link to the digital wallet?

User Authentication

Cardholder adopts multiple **identities** across the ecosystem:

- Cardholder ID
- Banking ID 🏛
- Device ID
- Wallet ID

Missing strong mapping across identities because of the distributed ecosystem.

User Authentication

Missing strong mapping across identities because of the distributed ecosystem.

Banks delegate the choice of authentication method to the wallet.

- <u>Knowledge-based Authentication (KBA)</u>
 - Billing Address
 - ZIP Code
 - Date of Birth
 - Last four digits of ID (e.g., SSN)
- Multi-factor Authentication (MFA)
 - SMS
 - Call
 - Email

User Authentication

Banks delegate the choice of authentication method to the wallet.

PayPal

Delegation of authentication allows an attacker to add a stolen card to their wallet using **weaker authentication**.

Card Lock – Physical Card vs. Digital Wallet

How to secure a lost card?

Card Issuer Banks	Physical Card	Wallet (one- time)	Wallet (Recurring)	
AMEX	×	\checkmark	\checkmark	
Chase	×	\checkmark	\checkmark	
Discover	×	\checkmark	\checkmark	
US Bank	×	×	\checkmark	Samsung Pay
Citibank	×	×	\checkmark	
BoAmerica	×	×	\checkmark	Device

Banks have established an unconditional trust with digital wallets.

Critical Procedures

Recap

Card Replacement

Card Replacement

An additional benefit to the Merchant is that the replacement of the underlying PAN has no impact on any affiliated Payment Token(s), so the Payment Token can continue to transact EMV[®] Payment Tokenisation: A Guide to Use Cases v2.1 (§10.7)

Critical Procedures

Cardholder Verification

Cardholder Verification

Cardholder Verification Methods (CVMs)

- Offline PIN
- Online PIN
- Signature
- <u>ZIP Code</u>
- Consumer device CVM (CDCVM)

CDCVM: unlock *wallet app* using fingerprint or face recognition to make transactions.

Terminal performs no CVM.

When the applicable CVM is 'No CVM required', if the terminal supports 'No CVM required' it shall set byte 3 of the CVM Results to 'successful'. W

EMV® Integrated Circuit Card Specifications for Payment Systems: Book 4 (§6.3.4)

In Wallet We Trust: Bypassing the Digital Wallets Payment Security for Free Shopping

Raja Hasnain Anwar University of Massachusetts Amherst ranwar@umass.edu Syed Rafiul Hussain Pennsylvania State University hussain1@psu.edu

Muhammad Taqi Raza University of Massachusetts Amherst taqi@umass.edu

SCAN ME

Abstract

SCAN ME

Digital wallets are a new form of payment technology that provides a secure and convenient way of making contactless payments through smart devices. In this paper, we study the security of financial transactions made through digital wallets, focusing on the authentication, authorization, and access control security functions. We find that the digital payment ecosystem supports the decentralized authority delegation which is susceptible to a number of attacks. First, an attacker adds the victim's bank card into their (attacker's) wallet by exploiting the authentication method agreement procedure between the wallet and the bank. Second, they exploit the unconditional trust between the wallet and the bank, and byTable 1: Summary of card lock policies for major US banks. Some banks allow (\checkmark) certain types of transactions on locked cards while blocking (\checkmark) others.

Card Issuer	Physical	Wallet	Wallet
Banks	Card	(one-time)	(Recurring)
AMEX	X	\checkmark	
Chase	X	\checkmark	√
Discover	X	\checkmark	\checkmark
US Bank	X	X	\checkmark
Citibank	X	×	
BoAmerica	X	×	

Ethical Considerations

All the tests were conducted on the **authors' devices** using **own credit cards**.

No financial liability on the banks, wallets, or merchants.

No attempt to defraud another digital wallet user.

All the findings have been responsibly **disclosed** to all the concerned **banks and wallets**.

Summary

- Banks have unconditional trust on the digital wallets
- Missing binding of cardholder *identities* leads to **weak authentication**.
- Card replacement in wallet does not require **user authentication**.
- In-device **cardholder verification** does not verify the *cardholder*.

Seeking internship opportunities!

Raja Hasnain Anwar

Email: <u>ranwar@umass.edu</u> Web: <u>rhasnainanwar.me</u>

Khwarizmi Lab @ UMass

www.ecs.umass.edu/khwarizmi

.

.

Follow our research