IEEE MASS'24 Seoul, South Korea.

Characterizing Encrypted Application Traffic Through Cellular Radio Interface Protocol

Md Ruman Islam[†], <u>Raja Hasnain Anwar</u>^{*}, Spyridon Mastorakis[‡], and Muhammad Taqi Raza^{*} [†]University of Nebraska Omaha, ^{*}University of Massachusetts Amherst, [‡]University of Notre Dame

September 23, 2024

Encrypted network traffic ensures no eavesdropping!

Encrypted network traffic ensures no **eavesdropping**!

What if...

An adversary can still see what apps the User-device is using!!!

/////

Understanding 5G: Device Registration

Every device needs to register and authenticate before accessing the 5G network.

Understanding 5G: Encryption Keys

The **NAS layer** encrypts all messages in subsequent exchanges, e.g., service requests, configuration updates.

Understanding 5G: Data Transmission

Despite strong authentication, encryption, and access control mechanisms, how can an adversary learn about the device's activities over the network?

Research Question

Despite strong authentication, encryption, and access control mechanisms, how can an adversary learn about the device's activities over the network?

Radio Resource Blocks (RRBs) Allocation!

The Key Idea: Observing Physical and MAC layer Interactions

The device pushes data to the **PDCP layer**.

The **PDCP protocol** transfers the data to the **MAC layer**.

Stores the data in application-specific buffer for transmission.

The **MAC scheduler** requests the base station for radio resources:

Quality-of-Service

(QoS)

Buffer sizes

Priority

The device is running four different types of applications, e.g., voice call, web browsing, streaming, and real-time gaming.

MAC Scheduling

- There are 26 QoS Class Identifiers (QCI) indicating:
 - Guaranteed Bit Rate (GBR), or Non-GBR
 - Relative priority
- MAC layer assigns and binds different queues according to user application QoS requirements.
- The scheduler assigns RRBs against every QoS class.
 - It takes the *number*, *size*, and *priority* of different queues into account.

Key Insight: Unique Application Resources

How to acquire scheduling (*) information for device-application fingerprinting?

Challenge 1

Acquiring Scheduling Information

- Downlink Control Information (DCI) through the Physical Downlink Control Channel (PDCCH).
 - DCI Type 0: Uplink
 - DCI Type 1: Downlink
- Bitmap indicating the Resource Block Groups (RBGs) allocated to the device.
- The DCI is transmitted **without encryption** over the air.
- Eavesdrop on the PDCCH and retrieve the bitmap with RBGs.

Identifying the Victim Device

- When a device registers with the network, it receives C-RNTI.
 - Unique device identifier within the cell.
 - Helps the device to identify the data intended for it.
- C-RNTI is sent in plaintext.
- The attacker can identify who is who over the radio communication.

EXPERIMENTS, EVALUATION, & FINDINGS!

Experimental Setup

- OnePlus 5G cell phone.
 - Running multiple GBR and non-GBR applications.
 - Automated with Selendroid.
- QXDM and QCAT for collecting traces.
 - Radio Resource Block (RRB)
- We collect the traces for a single application at a time.
- 1217 traces over six-months.
 - >= 20 iterations per application.
 - 43 GBs!

Service Category	Applications		
Online Shopping	Amazon, eBay, Etsy, Target		
Voice/Video Conferencing	Facebook Messenger, Telegram, WhatsApp, Zoom		
Video Streaming	YouTube (Live and Non- Live in various qualities)		
OTT Services	Apple TV+, Amazon Prime Video, Netflix		

RRB vs. Device Wireshark

Throughput patterns in RRB and Wireshark are *identical* and *interchangeable*.

Application Classification

- Random Forest and Extra Trees classifiers for application and service category classification.
- We use similar hyperparameters and training setting for direct comparison.
- Feature Generation:
 - Min, Max, Mean, STD, Slope, Q1, and Q3

Models	Accuracy	Avg. Precision	Avg. Recall	Avg. FI-Score
Random Forest	94	93	94	93
Extra Trees	90	91	93	91

CONCLUSION

- We successfully fingerprinted various mobile applications in the wild using RRB traces.
- Our work highlighted the following insights:
 - Mobile applications generate **unique footprints** based on the number, types, and sizes of resources.
 - A correlation exists among the total resources, **RRB**, and **Wireshark** throughputs.
 - We can analyze both **continuous and cumulative** data to distinguish different types of applications.
- Our study aims to inform future design, implementation, and deployment decisions of 5G mobile networks and beyond.

Seeking internship opportunities!

Raja Hasnain Anwar Email: <u>ranwar@umass.edu</u> Web: <u>rhasnainanwar.me</u> Khwarizmi Lab @ UMass www.ecs.umass.edu/khwarizmi Follow our research!

Lead Author

.........

Md Ruman Islam

Email: mdrumanislam@unomaha.edu